Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Biol. Res ; 52: 14, 2019. graf
Article in English | LILACS | ID: biblio-1011416

ABSTRACT

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Subject(s)
Plant Proteins/genetics , Stress, Physiological/genetics , Triticum/genetics , Gene Expression Regulation, Plant/genetics , Gene Silencing , Droughts , Phenotype , Plant Proteins/metabolism , Stress, Physiological/physiology , Triticum/metabolism , Plants, Genetically Modified/genetics , Plant Physiological Phenomena/genetics , Real-Time Polymerase Chain Reaction
2.
Biol. Res ; 52: 19, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011421

ABSTRACT

BACKGROUND: Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS: LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS: Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS: The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.


Subject(s)
Triticum/growth & development , RNA/physiology , Plant Roots/growth & development , Triticum/physiology , Down-Regulation/physiology , Up-Regulation/physiology , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction , RNA, Circular
3.
Biol. Res ; 51: 43, 2018. tab, graf
Article in English | LILACS | ID: biblio-983944

ABSTRACT

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Subject(s)
Stress, Physiological/physiology , Triticum/growth & development , RNA/isolation & purification , Plant Roots/growth & development , Gene Expression Regulation, Plant/physiology , Nitrogen/metabolism , Triticum/physiology , RNA/metabolism , RNA, Circular
4.
Ciênc. rural (Online) ; 48(3): e20170446, 2018. tab, graf
Article in English | LILACS | ID: biblio-1045081

ABSTRACT

ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411). Values of wheat seedling traits including maximum root length (MRL), root dry weight (RDW), shoot dry weight (SDW), total dry weight (TDW) and the ratio of TDW of wheat plants between salt stress and control (TDWR) were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.


RESUMO: A salinidade do solo limita a produção agrícola. O trigo mole é uma das culturas mais importantes com característica allohexaploid e genoma altamente complexo. O mapeamento QTL é uma maneira muito útil de identificar genes para traços quantitativos, como a tolerância à salinidade em trigo hexaplóide. No presente estudo realizou-se um ensaio hidropónico para identificar locos de traços quantitativos (QTLs) associados à tolerância à salinidade do trigo sob concentração de NaCl 150 mM, usando uma população de linhagem consanguíneo recombinante (Xiaoyan 54 × Jing 411). Os valores dos traços de mudas de trigo, incluindo comprimento máximo da raiz (MRL), peso seco da raiz (RDW), ponha o peso seco (SDW), peso seco total (TDW) e a proporção das plantas de trigo TDW entre o estresse salgado e o controle (TDWR), foram avaliados ou calculados. Um total de 19QTLs para cinco traços foram detectados através do método de mapeamento de intervalo composto usando a versão 2.5 do cartógrafo QTL sob condições normais e de estresse salino. Estes QTLs distribuídos em 12 cromossomos explicaram a porcentagem de variação fenotípica por QTL individual variando de 7,9% a 19,0%. Entre eles, foram detectados 11 e 6 QTLs em condições de estresse normal e sal, respectivamente, e dois QTLs foram detectados para TDWR. Cromossoma 1A, 3A e 7A podem conter genes que são candidatos cruciais associados à tolerância ao sal de trigo. Nossos resultados seriam úteis para a seleção assistida por marcadores para produzir variedades de trigo com tolerância salina melhorada.

SELECTION OF CITATIONS
SEARCH DETAIL